Evidence for the formation of an enamine species during aldol and Michael-type addition reactions promiscuously catalyzed by 4-oxalocrotonate tautomerase.

نویسندگان

  • Harshwardhan Poddar
  • Mehran Rahimi
  • Edzard M Geertsema
  • Andy-Mark W H Thunnissen
  • Gerrit J Poelarends
چکیده

The enzyme 4-oxalocrotonate tautomerase (4-OT), which has a catalytic N-terminal proline residue (Pro1), can promiscuously catalyze various carbon-carbon bond-forming reactions, including aldol condensation of acetaldehyde with benzaldehyde to yield cinnamaldehyde, and Michael-type addition of acetaldehyde to a wide variety of nitroalkenes to yield valuable γ-nitroaldehydes. To gain insight into how 4-OT catalyzes these unnatural reactions, we carried out exchange studies in D2 O, and X-ray crystallography studies. The former established that H-D exchange within acetaldehyde is catalyzed by 4-OT and that the Pro1 residue is crucial for this activity. The latter showed that Pro1 of 4-OT had reacted with acetaldehyde to give an enamine species. These results provide evidence of the mechanism of the 4-OT-catalyzed aldol and Michael-type addition reactions in which acetaldehyde is activated for nucleophilic addition by Pro1-dependent formation of an enamine intermediate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stereochemical Control of Enzymatic Carbon–Carbon Bond‐Forming Michael‐Type Additions by “Substrate Engineering”

The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to β-nitrostyrene derivatives to yield chiral γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acids. In this study, we investigated the effect of different substituents at the aromatic ring of the Michael acceptor on the catalytic efficienc...

متن کامل

Systematic screening for catalytic promiscuity in 4-oxalocrotonate tautomerase: enamine formation and aldolase activity.

The enzyme 4-oxalocrotonate tautomerase (4-OT) is part of a catabolic pathway for aromatic hydrocarbons in Pseudomonas putida mt-2, where it catalyzes the conversion of 2-hydroxy-2,4-hexadienedioate(1) to 2-oxo-3-hexenedioate(2). 4-OT is a member of the tautomerase superfamily, a group of homologous proteins that are characterized by a β-α-β structural fold and a catalytic amino-terminal prolin...

متن کامل

Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases.

The Michael-type addition reaction is widely used in organic synthesis for carbon-carbon bond formation. However, biocatalytic methodologies for this type of reaction are scarce, which is related to the fact that enzymes naturally catalysing carbon-carbon bond-forming Michael-type additions are rare. A promising template to develop new biocatalysts for carbon-carbon bond formation is the enzyme...

متن کامل

Engineering a Promiscuous Tautomerase into a More Efficient Aldolase for Self‐Condensations of Linear Aliphatic Aldehydes

The enzyme 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 takes part in a catabolic pathway for aromatic hydrocarbons, where it catalyzes the conversion of 2hydroxyhexa-2,4-dienedioate into 2-oxohexa-3-enedioate. This tautomerase can also promiscuously catalyze carbon-carbon bond-forming reactions, including various types of aldol reactions, by using its amino-terminal proline...

متن کامل

Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-Mannich and syn-aldol reactions.

Chiral 1,2-amino alcohols and 1,2-diols are common structural motifs found in a vast array of natural and biologically active molecules.1 Recently, significant efforts have been applied toward the development of direct catalytic asymmetric approaches to the construction of these units based on the addition of unmodified R-hydroxyketones to imines or aldehydes in Mannich-type and aldol reactions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chembiochem : a European journal of chemical biology

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2015